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In this paper, an adaptive cruise control system is designed that is 

controlled by a neural network model. This neural network model is 

trained with data resulting from the simulation of a multi-objective 

adaptive cruise control system. For this purpose, first, an adaptive cruise 

control system was designed using the concept of model predictive control 

to maintain the desired speed of the driver, maintain a safe distance with 

the car in front, reduce fuel consumption and increase ride comfort. Due 
to the time-consuming computations in predictive control systems and the 

consequent need for powerful and expensive hardware, it was decided to 

use the extracted data from the simulation of this designed cruise control 

system to train a neural network model and use this model to achieve 

control objectives instead of the predictive controller. Using the neural 

network model in the cruise control system, despite a significant reduction 

in computation time, the control objectives were well achieved, and in fact 

the model predictive controller accuracy and the neural network controller 

speed is combined. 
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1. Introduction 

One of the most important driver assistance 

systems in the car is the adaptive cruise control 

system. The cruise control system was initially 

designed and used only to maintain the driver's 

desired speed. To solve the safety problem that 

occurred due to the lack of distance between the car 

with cruise control and the car or obstacles in front 

of it, the adaptive cruise control system was 

introduced that in addition to maintaining the 

desired speed of the driver, also considers the 

distance from the car or obstacles in front. If the 

distance to the front car or obstacle is less than the 

safe distance, the objective of maintaining the safe 

distance takes precedence over the objective of 

maintaining the desired speed. Today, in addition 

to these two primary objectives of the adaptive 

cruise control system, i.e. maintaining the desired 

speed and maintaining the safe distance, secondary 

objectives such as reducing fuel consumption and 

increasing ride comfort are also considered. 

Achieving all of these control objectives together 

requires a sophisticated control system that is 

constantly optimizing an objective function 

consisting of control objectives. For this purpose, 

different controllers or a combination of them have 

been used. So far, cruise control systems have been 

designed that in addition to maintaining the desired 

driver speed and maintaining the safe distance, aim 

to reduce fuel consumption [1-5], increase ride 

comfort [6], or both to reduce fuel consumption 

and increase ride comfort [7-10].  The model 

predictive controller has been used the most among 

controllers in multi-objective adaptive cruise 
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control systems, and researchers have obtained 

very good results from this controller; but the 

model predictive controller, along with many 

advantages, has relatively long computational time. 

Regardless of the type of controller, reducing 

computation time due to increased controller 

usability and the possibility of using it in cheaper 

hardware has always encouraged researchers to 

find ways to reduce controller decision-making 

time or design controllers with short computation 

time. One of the controllers that has relatively short 

decision time is the neural network controller. The 

use of neural networks to control the car and 

especially the adaptive cruise control system is one 

of the most popular topics and various researchers 

have used neural networks for different purposes in 

the car. Ghaffari et al. used a neural network to 

predict the future behavior of a car equipped with 

a stop/go cruise control based on actual traffic data 

[11]. Marzbanrad and Moghaddam used a 

combination of genetic algorithms and neural 

networks to predict vehicle acceleration [12]. 

Ghaffari et al. presented a method based on 

artificial neural network for the calibration of an 

inertial accelerometer applied in the vehicle 

navigation. Levenberg-Marquardt algorithm is 

used to train the designed neural network [13]. 

Kazemi and Abdollahzade developed an adaptive 

technique for car following modeling in a traffic 

flow. The proposed technique includes an online 

fuzzy neural network which is able to adapt its rule-

consequent parameters to the time-varying 

processes [14]. Fotouhi et al. predicted the 

vehicle's velocity time series using neural 

networks. A multi-layer perceptron network is 

designed for driving time series [15]. Colombaroni 

and Fusco used neural networks to model driver 

behavior in car following [16]. Kuyumcu and 

Sengor used neural networks to find the throttle 

valve opening in adaptive cruise control system 

[17]. Using driver behavioral data, Wang et al. 

developed a neural network model and used it to 

make decisions about the sudden entry or exit of 

the opposite vehicle in the electric vehicle cruise 

control system [18]. Huang et al. used neural 

networks to approximate unknown vehicle 

dynamics in the car platoon [19]. Lin et al. used a 

neuro-fuzzy controller to design a cruise control 

system and they considered the car model to be a 

very simple linear model [20]. Lin and Gwyn used 

a neuro-fuzzy controller in the Cooperative Cruise 

Control System (CACC) [21]. Some researchers 

have also designed multi-objective cruise control 

systems using neural networks. Lin et al. compared 

two adaptive cruise control systems that used MPC 

and DRL in an electric vehicle. They used a simple 

car model. Reducing energy consumption was one 

of the objectives, but increasing comfort did not 

consider [22]. Cherian and Sathiyan used the 

neural network model to increase comfort in 

adaptive cruise control, but reducing fuel 

consumption was not one of the objectives [23]. 

Using RBFN, Yoon and Jeon predicted the future 

behavior of the vehicle and used it in the adaptive 

cruise control system. Increasing comfort was one 

of the objectives of this system, but reducing fuel 

consumption was not one of the objectives [24]. 

Nie et al. designed a cruise control system with 

adaptive PID control with RBFN, which increasing 

safety was one of the objectives, but the reduction 

of fuel consumption was not one of control 

objectives [25]. Zhang et al. used the data of the 

MPC controller to train a neural network model 

and use it instead of the predictive controller in the 

adaptive cruise control system, which aimed to 

reduce fuel consumption but increase ride comfort 

has not been as one of control objectives [26]. 

The purpose of this study is to use the excellent 

capability of the model predictive controller to 

achieve control objectives and meet control 

constraints while reducing computational time. For 

this purpose, a multi-objective cruise control 

system was designed with the objectives of 

maintaining the desired speed, maintaining the safe 

distance, reducing fuel consumption, and 

increasing ride comfort using a predictive control 

strategy. The results showed that achieving the 

control objectives while meeting the control 

constraints was very desirable, but as mentioned, 

the implementation of this control system requires 

relatively powerful hardware to solve complex 

optimization equations in a fraction of a second in 

presence of constraints. To get rid of time-

consuming calculations and achieve real-time 

control, the results of the multi-objective predictive 

cruise control simulation performed in MATLAB 

software were used to train a neural network model 

to be used instead of predictive controller. The 

result is the achievement of control objectives with 
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appropriate accuracy along with a significant 

reduction in computational time. By using neural 

network model, control objectives and constraints 

are suitably met and a significant reduction in 

computational time makes it possible to use this 

cruise control system with a wide range of 

hardware. 

2. Methods 

In this study, first, a multi-objective predictive 

adaptive cruise control system was designed with 

the objectives of maintaining speed, maintaining 

safe distance, reducing fuel consumption, and 

increasing comfort. This cruise control system 

consists of upper-level and lower-level controllers. 

The upper-level controller is a model predictive 

controller that calculates the desired acceleration to 

achieve the control objectives in the presence of 

constraints and announces calculated acceleration 

to the lower-level controller. The lower-level 

controller calculates the amount of throttle valve 

opening or braking pressure required by the vehicle 

to achieve this desired acceleration. The predictive 

controller minimizes an objective function which 

includes the objectives of maintaining the desired 

speed of the driver, maintaining a safe distance 

from the vehicle in front, increasing ride comfort, 

and reducing fuel consumption in the presence of a 

constraint to maintain a safe distance at all times 

and also an acceleration constraint which is a 

maximum of 3m

s2
 and a minimum of −3m

s2
. 

Acceleration limits has been selected to create ride 

comfort and avoid increasing travel time [27]. 

Then, by simulation in MATLAB software, this 

cruise controller was used in a car (so-called host 

car) moving behind another car (so-called 

preceding car), and the data of distance, speed, 

acceleration, throttle valve opening, and brake 

pressure saved; Finally, these data were used to 

train a neural network model and that model used 

in the cruise control system instead of upper-level 

and lower-level controllers. 

2.1. Longitudinal model of the car 

Modeling of car longitudinal dynamics consists of 

two main approaches, which are: car dynamics in 

general and car subsystem dynamics. The car 

consists of many subsystems and the most 

important parts for analyzing and modeling the 

longitudinal dynamics of the car are: engine, torque 

converter, transmission, final drive, and wheels. If 

we look at the car from the outside as a free body 

as shown in Figure 1, forces such as gravity force, 

air resistance force, wheel longitudinal forces, and 

rolling resistance forces enter it. 

 

Figure 1. Forces on the vehicle 

2.2. Control structure 

The designed controller has a hierarchical structure 

that consists of two controllers called the upper-

level controller and the lower-level controller. In 

each control step, the upper-level controller that is 

a model predictive controller, while minimizing a 

specific objective function in the presence of 

constraints calculates desired acceleration and 

announces it to the lower-level controller and 

lower-level controller which is also called 

longitudinal controller determines the amount of 

throttle valve opening or brake pressure required to 

achieve this acceleration. 

This research consists of two main parts, the first 

part is car modeling and design of the controller 

and the second part is the use of simulation data of 

this controller to train a neural network model. 

Since the second part is considered as innovation 

of this paper, to avoid prolonging the discussion, 

deriving vehicle dynamic equations and control 

structure are described in the appendices of the 

paper. 

2.3. Simulation of designed cruise control 

system 
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The designed cruise control system is a cruise 

control system with upper-level and lower-level 

controllers. The objectives of the adaptive cruise 

control system are: maintain the desired speed, 

maintain the safe distance from the car in front, 

reduce fuel consumption, and increase ride 

comfort. In the predictive controller, in each 

control step, an optimization problem based on an 

objective function and some constraints were 

solved to calculate a control command. Optimal 

acceleration, calculated by the upper-level 

controller, is limited between the maximum of 3m

s2
 

and the minimum of −3m

s2
, and the desired driver 

speed is 30m

𝑠
 equals to 108km

h
. This adaptive cruise 

control system is used to control a nonlinear 

vehicle model in MATLAB software and the 

simulation results are shown in Figures 2 to 5. 

 

Figure 2. Position of two cars relative to each other 

 

Figure 3. Distance between two cars compared to the 

safe distance 

 

Figure 4. Host car speed 

 

Figure 5. Host car acceleration 

2.4. Train the neural network model 

As can be seen in Figures 2 to 5, the results of using 

the designed adaptive cruise control system are 

very good, but since the calculations of the 

predictive controller and lower-level controller 

take a relatively long time, to make the multi-

objective adaptive cruise control system usable in 

wider range of hardware, data from simulated 

cruise control systems used to train a neural 

network model. Then this trained model replaced 

the upper-level and lower-level controllers in the 

cruise control system. The neural network model 

has two hidden layers that each layer has 10 

neurons. To determine the number of hidden layers 

and the number of neurons in each layer, different 

modes were selected and examined and finally, 

these values that had the best results were selected. 

Also, the Levenberg-Marquardt method has been 

used for backpropagation calculations; Because the 

Levenberg-Marquardt method has two choices in 

each iteration, it is more robust than a method such 

as Gradient Descent (GD) or Gauss-Newton (GN). 

It also has higher convergence speed and lower 

sensitivity to initial estimation rather than either 

GD or GN method [28]. To train the neural network 
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model, the host vehicle speed and the distance 

between the host vehicle and the front vehicle were 

selected as inputs and the throttle valve opening 

and brake pressure were selected as outputs. This 

neural network model replaced the upper-level and 

lower-level controllers in adaptive cruise control 

system and the simulation results of using this 

neural network model are shown in Figures 6 to 9. 

 

Figure 6. Position of two cars relative to each other 

using the neural network model 

 

Figure 7. Distance between two cars compared to the 

safe distance using the neural network model 

 

Figure 8. Host car speed using the neural network 

model 

 

Figure 9. Car acceleration using the neural network 

model 

3- Results 

After training the neural network model, it was 

used to control a nonlinear vehicle model. In the 

simulations, the desired driver speed is assumed to 

be 30m
𝑠
 equivalent to 108km

h
. In the neural network 

model, the inputs are the host vehicle speed and the 

distance of the host vehicle from the front vehicle 

and the outputs are the throttle valve opening and 

brake pressure, and this model replaced the upper-

level and lower-level controllers. 

Figure 6 shows the position of the two cars relative 

to each other; As can be seen, the host car is always 

far from the preceding car. Figure 7 has a better 

expression of safety and shows the distance 

between two cars compared to the safe distance 

calculated by the controller; It can be seen that the 

distance between two cars is always greater than 

the safe distance calculated by the controller, 

which indicates full compliance with the safety 

constraint. Figure 8 is the host vehicle speed curve, 

which shows that the driver's desired speed of 30m

𝑠
 

is well achieved and maintained. Figure 9 is the 

host vehicle acceleration curve, and can be seen 

that acceleration constraints, i.e. maximum of 3m

s2
 

and minimum of −3m

s2
 are well considered. 

3.1. Comparison with PID controller  

To observe the proper performance of the neural 

network controller, the results of its use are 

compared with the results of the use of the PID 

controller. The PID controller is adjusted with a lot 

of trial and error and has a relatively good response 

shown in Figures 10 to 13. Despite the relatively 

good results of the PID controller, these results are 
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very poor compared to the results of the neural 

network controller. Safety criterion is not observed 

sometimes (for example, around the 20 second( 

and the desired speed is not well met. It is also clear 

from the acceleration curve that the acceleration 

constraints are not observed and jerk is very high. 

Fuel consumption is also almost 30% higher than 

the neural network controller. Therefore, the 

performance of the neural network controller is 

much better than a widely used controller such as a 

well-tuned PID, and in fact, the PID controller 

cannot be used here due to non-compliance with 

constraints and poor performance. 

 

Figure 10. Position of two cars relative to each other 

using the PID controller 

 

Figure 11. Distance between two cars compared to the 

safe distance using the PID controller 

 

Figure 12. Host car speed using the PID controller 

 

Figure 13. Host car acceleration using the PID 

controller 

 

4 - Conclusion 

Using the model predictive controller in a 

hierarchical control structure of a multi-objective 

adaptive cruise control system leads to excellent 

results, and its only drawback is the long 

computation time and the need for powerful 

hardware. So, the results of the simulation of this 

cruise control system were used to train a neural 

network model and it was used in the cruise control 

system. The trained model fully meets the safety 

criterion, which is to maintain the safe distance 

from the preceding car. Also, achieves and 

maintains the desired speed of the driver and 

maintains acceleration within the specified range. 

Therefore, in addition to achieving control 

objectives and meeting safety criterion, the 

computation time is greatly reduced and the 

possibility of using this multi-objective cruise 

control system in low-cost and not very powerful 

hardware is provided. 
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Appendix A: Control-oriented model 
According to Figure 1, by writing the balance of 

external forces acting on the car along the 

longitudinal axis of the car according to Newton's 

second law we have: 

(A1) 
𝐹𝑥𝑓 + 𝐹𝑥𝑟 −𝑚𝑔𝑠𝑖𝑛𝜃 − 𝐹𝑎𝑒𝑟𝑜 −𝑅𝑥𝑓

−𝑅𝑥𝑟 = 𝑚𝑥̈ 

Where, Fxf is the sum of the longitudinal forces on 

the front wheels, Fxr is the sum of the longitudinal 

forces on the rear wheels, m is the mass of the car, 

g is the gravitational acceleration, θ is the angle of 
the road, Faero is the aerodynamic force, Rxf is the 

sum of the rolling resistance forces on the front 

wheels and Rxr is the sum of the rolling resistance 
forces on the rear wheels of the car. The 

longitudinal forces of the wheels are the main 

forces for driving the car. The aerodynamic force 
can be expressed as follows: 

(A2) 𝐹𝑎𝑒𝑟𝑜 = 0.5𝜌𝐶𝑑𝐴𝑓(𝑉𝑥 ±𝑉𝑤𝑖𝑛𝑑) 

Where, ρ is the air density, Cd is the air drag 

coefficient, Af is the projected area of the front 

surface of the car, Vx is the longitudinal speed of 

the car and Vwind is the wind speed. The sum of the 

vertical forces acting on the front and rear wheels 

(Fzf  and Fzr, respectively) can be calculated by 

writing the balance of forces around the point of 

contact of the wheels with the road: 

 

𝐹𝑧𝑓

=
−𝐹𝑎𝑒𝑟𝑜ℎ𝑎𝑒𝑟𝑜 −𝑚𝑥̈ℎ −𝑚𝑔ℎ𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑙𝑐𝑜𝑠𝜃

𝑙𝑓 + 𝑙𝑟
 

(A3

) 

𝐹𝑧𝑟

=
𝐹𝑎𝑒𝑟𝑜ℎ𝑎𝑒𝑟𝑜 +𝑚𝑥̈ℎ +𝑚𝑔ℎ𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑙𝑐𝑜𝑠𝜃

𝑙𝑓 + 𝑙𝑟
 

Where, l is the length of the car, haero is the distance 

of the aerodynamic force from the ground level, 

and lf, lr and h are the distance of the center of 
gravity of the car from the front axle, rear axle, and 

ground level, respectively. Rolling resistance is 

usually defined as a function of the sum of the 

vertical forces acting on the wheels: 

(A4) 𝑅𝑥𝑓 + 𝑅𝑥𝑟 = 𝑓(𝐹𝑧𝑓 + 𝐹𝑧𝑟) = 𝑓𝑚𝑔𝑐𝑜𝑠𝜃 

Where, f is the coefficient of rolling resistance. The 

longitudinal forces acting on the wheels can be 
calculated from the following equations: 

 𝐹𝑥𝑓 = 𝜇𝐹𝑧𝑓  

(A5) 𝐹𝑥𝑟 = 𝜇𝐹𝑧𝑟 

Where, µ is the coefficient of friction of the wheel 

with the road. To calculate the coefficient of 

friction of the wheel with the road, the nonlinear 
model of Pacejka has been used: 

(A6) 

𝜇 = 𝐷𝑠𝑖𝑛[𝐶𝑡𝑔−1{𝐵𝜎𝑥
−𝐸(𝐵𝜎𝑥
− 𝑡𝑔−1𝐵𝜎𝑥)}] 

Where, σx is the wheel slip ratio and B, C, D, and E 

are the pacejka coefficients, which indicate the 

stiffness coefficient, shape coefficient, maximum 

value, and curvature coefficient of the coefficient 

of friction, respectively. In the following, dynamic 

equations related to car subsystems and their 

relationship with each other are presented. For the 

engine can be written: 

(A7) 𝐼𝑒𝜔̇𝑒 = 𝑇𝑖 − 𝑇𝑓 − 𝑇𝑎 − 𝑇𝑝 

Where, Ie is engine moment of inertia, 𝜔̇e is engine 

angular acceleration, Ti is torque resulting from 

combustion in the engine, Tf is the torque due to 
friction, Ta is torque consumed by equipment, and 

Tp is pump torque and expresses load from the 

pump on the engine. If we call Ti - Tf - Ta the net 
torque produced by the engine and display it with 

Te, we can write: 
(A8) 𝐼𝑒𝜔̇𝑒 = 𝑇𝑒 − 𝑇𝑝 

The torque converter is modeled as follows: 

(A9) 

𝑇𝑝 = 𝑇𝑡 = −0.0067644𝜔𝑝
2

+ 0.0320024𝜔𝑝𝜔𝑡

− 0.0252441𝜔𝑡
2 

Where, Tt is the turbine torque, ωp is the pump 

angular speed and ωt is the turbine angular speed. 
The wheels angular speed is affected by the 

dynamics of the car subsystems from the engine to 

the wheel. The wheel angular speed is the angular 
speed of the turbine divided by the product of 

gearbox ratio and final drive ratio: 

(A10) 𝜔𝑤 =
1

𝑅
𝜔𝑡  

Where, ωw is the wheel angular speed and R is the 

product of gearbox ratio and final drive ratio. For 
driving wheels (for example, front wheels in front-

wheel-drive cars) it can be written: 

(A11) 𝐼𝑤𝜔̇𝑤𝑓 = 𝑇𝑤ℎ𝑒𝑒𝑙 − 𝑟𝑒𝑓𝑓𝐹𝑥𝑓 

And for driven wheels it can be written:  

(A12) 𝐼𝑤𝜔̇𝑤𝑟 = −𝑟𝑒𝑓𝑓𝐹𝑥𝑟  

Where, Iw is wheel moment of inertia, reff is wheel 

effective radius and Twheel is wheel torque. 

As mentioned earlier, the upper-level controller 
calculates an optimal acceleration (ades) and 

announces it to the lower-level controller. lower-

level controller tries to  realize the following 
relation: 

(A13) 
.. ..

desx x=  

Then, it calculates the torque required to achieve 
this desired acceleration. To calculate the torque, 

assume that the torque converter is locked and no 
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Figure A1. Engine Map 

slippage occurs between the wheels and the road. 

These two assumptions are reasonable because the 
cruise control system is usually used in gear 3 and 

above that in those cases the torque converter is 

locked; Also due to smooth driving when using the 
cruise control system, the wheel's slip is about zero. 

If the torque converter is locked and the gearbox is 

in the steady state (i.e. not shifting gears) and the 

longitudinal slip of the wheels is negligible, we can 
relate the angular velocity of the wheels to the 

angular velocity of engine with the following 

relation: 

(A14) 
1

w e
R

 =  

By combining the above equations, we will have: 

(A15

) 

3..
2

3
0.5e eff eff br

dese x d f e

eff

J R r r T
T x R C A

r R R R
 = + + +  

Now, having the angular velocity of the engine and 
the desired engine torque and using the engine 

map, the amount of throttle opening required to 

achieve the desired acceleration can be determined. 
The engine map is shown in Figure A1 which gives 

the throttle angle in terms of engine torque and 

angular velocity of engine.   
The parameters of the developed model are given 

in Table A1. 

 
 
 

 

 

Table A1. Car Model parameters 

parameter unit value 

car effective aria m2 2.1 

air drag coefficient - 0.35 

aerodynamic force distance 

from the ground 
m 0.54 

wheel moment of inertia kg.m2 0.318 

final drive moment of inertia  kg.m2 0.01 

engine moment of inertia kg.m2 0.25 

wheelbase m 2.415 

distance of car CG from front 

axle, rear axle, and ground 
m 

h=0.54 

lf=0.955 

lr=1.460 

car mass kg 1415 

wheel effective radius m 0.279 

final drive ratio - 3.9 

air density kg.m-3 1.206 

Appendix B: Control structure  
The control structure for design of this multi-

objective cruise control system (maintaining speed, 

maintaining a safe distance, reducing fuel 

consumption and increasing comfort) is a 

hierarchical control structure with an upper-level 

controller, that calculates the optimal acceleration 

to meet the control objectives in the presence of the 

constraints and announces that acceleration to the 

lower-level controller and so the lower-level 

controller calculates the amount of throttle valve 

opening or braking pressure required to achieve 

this desired acceleration. Due to the function of the 

upper-level controller, which actually includes 

multi-objective optimization, and the power of the 

model predictive controller (MPC) to perform 

control operations based on optimization in the 

presence of various constraints, the upper-level 

controller is a model predictive controller. In each 

control step, the model predictive controller 

obtains values for acceleration in the presence of 

constraints and minimizing a specific objective 

function. 

A model that also called the process model is used 

to predict the future outputs of the process based on 

past and present values and taking into account the 

calculated optimal future control commands. The 

control commands are calculated by the optimizer 

taking into account the objective function (in which 

the future tracking error is included) as well as the 

constraints. The process model plays an important 

role in the model predictive controller and should 

be able to describe process dynamics to predict 

future outputs. System state-space equations can be 

written as follows: 

(B1) 
( ) ( 1) ( 1)

( ) ( )

x t Ax t Bu t

y t Cx t

= − + −

=
 

Where A is the system matrix, B is the input matrix 

and C is the output matrix. These equations can be 

used to predict system outputs at later times. The 

predicted outputs will be as follows [30]: 

(B2) 
1

1

ˆ ( | )

ˆ ( | )

[ ( ) ( | )]
k

k i

i

y t k t

Cx t k t

C A x t A Bu t k i t−

=

+ =

+ =

+ + −

 

The control variable u must be found such that the 

following objective function: 
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(B3) 

2

1

2

1

2

1

ˆ( )[ ( | ) ( )]

( )[ ( 1)]

( )[ ( 1)]

c

c

N

j

N

j

N

j

J j y t j t w t j

j u t j

j u t j







=

=

=

= + − + +

+ − +

 + −







 

In the presence of the following constraints: 

(B4) 
min max

min max

min max

:

( )

( ) ( 1)

( )

t

u u t u

du u t u t du

y y t y



 

 − − 

 

 

Be minimized. α, β and γ are the weights we assign 

to each term of the objective function, and w is the 

reference vector for the system outputs. In 

designing the upper-level controller, we encounter 

a system that its state variables are: distance of the 

host vehicle from the vehicle in front (xp-xh), speed 

of the host vehicle (vh) and acceleration of the host 

vehicle (ah). Also, system measured outputs are: 

distance of two vehicles from each other (xp-xh) 

which is measured by radar and speed of the host 

vehicle (vh) which is measured by the speed sensor 

of the host vehicle. The front vehicle velocity (vp) 

enters into the system equations as a disturbance. 

The control variable is the desired acceleration 

(ades) that will be sent to the lower-level controller. 

Due to its complex dynamics, the car achieves its 

acceleration (a) to this desired acceleration (ades) 

after a time delay that is called time constant. 

relation between desired acceleration and actual 

acceleration can be expressed according to the 

following equation: 

(B5) 
.. ..1

1
desx x

s
=

+
 

And in other words: 

(B6) 
... .. ..

desx x x + =  

Where x is the longitudinal position of the vehicle 

and τ is the delay or time constant. Therefore, 

considering the upper-level controller, the state 

variables are: 

(B7) 

p h

h

h

x x

X v

a

− 
 

=
 
  

 

And output variables are: 

(B8) 
(1) (1)

(2) (2)

p h

h

Y x x X

Y v X

= − =

= =
 

And control variable is: 

(B9) desU a=  

And the system state-space equations will be as 

follows: 

(B10) 

(1)

(2)

1 1
(3)

p h

h

h des

dX
v v

dt

dX
a

dt

dX
a a

dt  

= −

=

= − +

 

It is assumed that the measurement of vehicle 

speed and distance between two vehicles has noise, 

so an extended Kalman filter is used to obtain all 

state variables. The Kalman filter is an optimal 

estimator and is used when it is not possible (or 

cost-effective) to measure all the state variables or 

the measurement of the variables has noise. 

The safe distance from the car in front is described 

as a variable which is obtained from the following 

equation: 

(B11) 0 gap hd d t v= +  

Where d is the expected safe distance, d0 is the 

minimum safe distance that here is 5 meters, tgap is 

the time distance that here is 1.5 seconds, and vh is 

the speed of the host vehicle. The time distance is 

the time it takes for the rear car to reach the current 

position of the front car. To achieve the objectives 

of increasing comfort and decreasing fuel 

consumption, the amount of positive and negative 

acceleration and jerk are limited and included in 

the objective function. For this purpose, the desired 

acceleration calculated by the upper-level 

controller is limited between  −3𝑚

𝑠2
   and 3

𝑚

𝑠2
 and the 

derivative of this acceleration (jerk) is limited 

between   −2𝑚

𝑠3
  and 2

𝑚

𝑠3
. In the objective function, 

a weight is considered for each objective, which 
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expresses the value of achieving that objective 

compared to other objectives. The objective 

function is as follows: 

(B12) 

2 2

1 2

2

3

2

4

( ( ))

( )

des

p h

ref h

J w a w j

w d x x

w v v

= + +

− − +

−

 

In which, while maintaining the desired speed of 

the driver and maintaining a safe distance, an effort 

has been made to limit acceleration and jerk in 

order to reduce fuel consumption and increase 

comfort. Because limiting the sudden change of 

speeds (acceleration) and the sudden change of 

accelerations (jerk) has a severe effect on reducing 

fuel consumption and increasing comfort. The 

Control constraints are as follows: 

(B13) 
2 2

2 2

0 60

3 3

2 2

p h

h

des

des

d x x

v

m ma
s s

m mj
s s

 −

 

−  

−  

 

After calculating the desired acceleration by the 

upper-level controller, the car must reach its 

acceleration to this desired acceleration. This task 

is performed by the lower-level controller. The 

lower-level controller calculates the amount of 

throttle valve opening or the amount of brake 

pressure required to achieve this acceleration. For 

the lower-level controller, the dynamic equations 

of the vehicle derived in Appendix A is used. 

According to the objectives of reducing fuel 

consumption and increasing comfort, when it is 

necessary to reduce acceleration, if the safety 

criterion is maintained, closing the throttle valve is 

prior to braking. In the Appendix A, using 

Newton's second law and the dynamic equations of 

various parts of the car and their interactions, the 

relation between desired acceleration and engine 

torque was obtained:  

(B14

) 

3
2

3
0.5e eff eff br

e des x d f e

eff

J R r r T
T a R C A

r R R R
 = + + +  

In other words, the upper-level controller 

calculates the desired acceleration (ades) and 

announces it to the lower-level controller, and in 

the lower-level controller using the above equation, 

the engine torque required to reach the car to this 

acceleration is calculated and then having torque 

and angular velocity of the engine and using the 

engine map, which is the relation between the three 

variables of engine torque, engine angular velocity 

and the amount of throttle valve opening, the 

amount of throttle valve opening is calculated to 

achieve the desired acceleration. In the above 

equation, in the case where the calculated desired 

acceleration is positive, we consider the braking 

torque (Tbr) to be zero to calculate the engine 

torque, and in the case where the calculated desired 

acceleration is negative, we consider the engine 

torque (Te) to be zero to calculate the braking 

torque. 

 

Nomenclature: 

Fxf sum of the longitudinal forces on the 

front wheels 

Fxr sum of the longitudinal forces on the 

rear wheels 

m mass of the car 

g gravitational acceleration 

θ angle of inclination of the road 

Faero aerodynamic force 

Rxf sum of the rolling resistance forces on 
the front wheels 

Rxr sum of the rolling resistance forces on 

the rear wheels 

ρ air density 

Cd coefficient of air drag 

Af projected area of the front surface of the 

car 

Vx longitudinal speed of the car 

Vwind wind speed 

Fzf sum of the vertical forces acting on the 
front wheels 

Fzr sum of the vertical forces acting on the 

rear wheels 

l length of the car 

haero distance of the aerodynamic force from 

the ground level 

lf distance of the center of gravity of the 
car from the front axle 
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lr distance of the center of gravity of the 
car from the rear axle 

h distance of the center of gravity of the 

car from ground level 

Rxf sum of the rolling resistance forces on 

the front wheels 

Rxr sum of the rolling resistance forces on 
the rear wheels 

f coefficient of rolling resistance 

Fxf sum of the longitudinal forces on the 

front wheels 

Fxr sum of the longitudinal forces on the 

rear wheels 

µ coefficient of friction of the wheel with 
the road 

σx wheel slip ratio 

B stiffness coefficient of the coefficient of 

friction 

C shape coefficient of the coefficient of 

friction 

D maximum value of the coefficient of 
friction 

E curvature coefficient of the coefficient 

of friction 

Ie engine moment of inertia 

𝜔̇e engine angular acceleration 

Ti torque resulting from combustion in the 

engine 

Tf torque due to friction 

Ta torque consumed by the equipment 

Tp pump torque 

Te net torque produced by the engine 

Tt turbine torque 

ωp pump angular speed 

ωt turbine angular speed 

ωw wheel angular speed 

R product of gearbox ratio and final drive 

ratio 

Iw wheel moment of inertia 

reff wheel effective radius 

Twheel wheel torque 
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